Jan $16^{\text {th }}$ Team Tuesday

Practical 2 In a simple experiment five cylinders of potato were soaked in five solute concentrations as shown below.

solute concentration

1. Estimate the solute concentration of the cytoplasm of the potato cell cytoplasm. [1]
2. State the factors which must be controlled to make the experiment a reliable fair test. [2]
3. Explain what the figures $+/-0.05 \mathrm{~g}$ and $+/-0.02 \mathrm{~mol}$ indicate. [3]
4. 0.07 mol ; range 0.06 to 0.08 mol [1]
5. [Max 2]

- Temperature
- Time for diffusion
- Shape of potato cylinders
- Type of potato
- Skin present or not on potato
- Time for solute to dissolve in solution

3. [3] $+/-0.05 \mathrm{~g}$ means that a reading of 0.1 g could be as little as 0.05 g or as much as 0.15 g due to uncertainty. The value is certain to be within this range, but we do not know the precise value.
The same is true for concentration values with a $+/-0.02$ mol variation.
Since the uncertainties are quite smaller than the measured values, it can be inferred that the data is probably reliable.

Jan $17^{\text {th }}$ Wise Wednesday
D3 List four functions of the human liver [5]
A. Nutrient storage / storage of glucose as glycogen
B. Removes bilirubin/ammonia/alcohol from the blood
C. Storage of iron
D. Storage of fat soluble vitamins
E. Produces cholesterol
F. Produces plasma proteins / albumin
G. Produces clotting factors
H. Red blood cell breakdown / recycling

Jan $18^{\text {th }}$ Thinking Thursday

2.3.U1 Outline the production of a maltose by a condensation reaction between two glucose. [5]
A. Condensation reactions combine molecules together
B. Glucose is a monosaccharide/ monomer;
C. Maltose is a disaccharide;

D. Hydroxyl group/ -OH of glucose reacts with hydroxyl group/ -OH of another;
E. Water / $\mathrm{H}_{2} \mathrm{O}$ is eliminated;
F. Bond carbon 1 to carbon 4 (can be shown in diagram);
G. Correctly drawn diagram of glucose;
H. Correctly drawn diagram of maltose;

Jan 19th Figure Friday

1.1.S3

Calculate the magnification of this image. Show your working.
[3]
$100 \mu \mathrm{~m}=0.1 \mathrm{~mm}$
$32 \mathrm{~mm} / 0.1 \mathrm{~mm}$
$=320 \mathrm{X}$ life size

OR

$32 \mathrm{~mm}=32000 \mu \mathrm{~m}$ $32000 \mu \mathrm{~m} / 100 \mu \mathrm{~m}$

$=320 \mathrm{X}$ life size

